Search

Electronic excitations at the plasmon–molecule interface - Nature.com

kembaliui.blogspot.com

Abstract

The recent rise of plasmonic materials for solar-to-chemical energy conversion places a focus on the mechanisms associated with charge and energy flow at the metal–molecule interface. Understanding the connection between these effects and their roles in the plasmonic excitations of adsorbed molecules has been challenging. In this Review, we strive to provide a general framework—based on the concept of electron scattering—that encompasses the most important effects at the plasmonic metal–molecule interface. First we use the model of adsorbate-induced surface resistivity to understand the chemical specificity of the electron scattering process. We then analyse two of the most prominent effects in plasmonics through the lens of the electron scattering model: chemical interface damping and the chemical model of surface-enhanced Raman scattering. We show how most metal–adsorbate charge- or energy-transfer interactions can be mapped into two major classes—electron scattering through molecular resonances and direct non-resonant electron scattering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of the development of the field of plasmonic catalysis.
Fig. 2: Four different phenomena arising at the metal–molecule interface due to electron scattering.
Fig. 3: RES and NRES at the metal–adsorbate interface.
Fig. 4: Comparison of adsorbate-induced surface resistivity and CID.
Fig. 5: Vibrational pumping probed by SERS.

References

  1. Plummer, E. W. & Gustafsson, T. Geometry of adsorbates on solid surfaces. Science 198, 165–170 (1977).

    Article  ADS  Google Scholar 

  2. Smith, N. V. & Woodruff, D. P. Inverse photoemission from metal surfaces. Prog. Surf. Sci. 21, 295–370 (1986).

    Article  ADS  Google Scholar 

  3. Woodruff, D. P. Fine structure in ionisation cross sections and applications to surface science. Rep. Prog. Phys. 49, 683 (1986).

    Article  ADS  Google Scholar 

  4. Bertel, E. Unoccupied electronic states in adsorbate systems. Appl. Phys. A 53, 356–368 (1991).

    Article  ADS  Google Scholar 

  5. Otto, A., Bornemann, T., Ertürk, Ü., Mrozek, I. & Pettenkofer, C. Model of electronically enhanced Raman scattering from adsorbates on cold-deposited silver. Surf. Sci. 210, 363–386 (1989).

    Article  ADS  Google Scholar 

  6. Jacobi, K., Astaldi, C., Geng, P. & Bertolo, M. Physisorption of N2 and CO on Al(111): a combined HREELS-UPS investigation. Surf. Sci. 223, 569–577 (1989).

    Article  ADS  Google Scholar 

  7. Hansen, W., Bertolo, M. & Jacobi, K. Physisorption of CO on Ag(111): investigation of the monolayer and the multilayer through HREELS, ARUPS, and TDS. Surf. Sci. 253, 1–12 (1991).

    Article  ADS  Google Scholar 

  8. Bertolo, M., Hansen, W., Geng, P. & Jacobi, K. Resonance and dipole electron-scattering in physisorbed mono- and multilayers on Al(111) and Ag(111) surfaces. Surf. Sci. 251252, 359–363 (1991).

    Article  ADS  Google Scholar 

  9. Bonn, M. et al. Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999).

    Article  Google Scholar 

  10. Mukherjee, S. et al. Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. J. Am. Chem. Soc. 136, 64–67 (2014).

    Article  Google Scholar 

  11. Christopher, P., Xin, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044–1050 (2012).

    Article  ADS  Google Scholar 

  12. Landry, M. J., Gellé, A., Meng, B. Y., Barrett, C. J. & Moores, A. Surface-plasmon-mediated hydrogenation of carbonyls catalyzed by silver nanocubes under visible light. ACS Catal. 7, 6128–6133 (2017).

    Article  Google Scholar 

  13. Kim, Y., Wilson, A. J. & Jain, P. K. The nature of plasmonically assisted hot-electron transfer in a donor–bridge–acceptor complex. ACS Catal. 7, 4360–4365 (2017).

    Article  Google Scholar 

  14. Zhang, X. et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8, 14542 (2017).

    Article  ADS  Google Scholar 

  15. Oshikiri, T., Ueno, K. & Misawa, H. Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angew. Chem. Int. Ed. 53, 9802–9805 (2014).

    Article  Google Scholar 

  16. Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

    Article  Google Scholar 

  17. Ezendam, S. et al. Hybrid plasmonic nanomaterials for hydrogen generation and carbon dioxide reduction. ACS Energy Lett. 7, 778–815 (2022).

    Article  Google Scholar 

  18. Linic, S., Chavez, S. & Elias, R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 20, 916–924 (2021).

    Article  ADS  Google Scholar 

  19. Herran, M. et al. Tailoring plasmonic bimetallic nanocatalysts toward sunlight-driven H2 production. Adv. Funct. Mater. 32, 2203418 (2022).

    Article  Google Scholar 

  20. Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10, 2–6 (2015).

    Article  ADS  Google Scholar 

  21. Khurgin, J. B. Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discuss. 178, 109–122 (2015).

    Article  ADS  Google Scholar 

  22. Foerster, B., Spata, V. A., Carter, E. A., Sönnichsen, C. & Link, S. Plasmon damping depends on the chemical nature of the nanoparticle interface. Sci. Adv. 5, eaav0704 (2019).

    Article  ADS  Google Scholar 

  23. Persson, B. N. J. Polarizability of small spherical metal particles: influence of the matrix environment. Surf. Sci. 281, 153–162 (1993).

    Article  ADS  Google Scholar 

  24. Hartland, G. V., Besteiro, L. V., Johns, P. & Govorov, A. O. What’s so hot about electrons in metal nanoparticles? ACS Energy Lett. 2, 1641–1653 (2017).

    Article  Google Scholar 

  25. Kneipp, K. et al. Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys. Rev. Lett. 76, 2444–2447 (1996).

    Article  ADS  Google Scholar 

  26. Persson, B. N. J. Surface resistivity and vibrational damping in adsorbed layers. Phys. Rev. B 44, 3277–3296 (1991).

    Article  ADS  Google Scholar 

  27. Gadzuk, J. W. Resonance-assisted, hot-electron-induced desorption. Surf. Sci. 342, 345–358 (1995).

    Article  ADS  Google Scholar 

  28. Khurgin, J. B. Hot carriers generated by plasmons: where are they generated and where do they go from there? Faraday Discuss. 214, 35–58 (2019).

    Article  ADS  Google Scholar 

  29. Gadzuk, J. W. & Šunjić, M. Electron scattering from molecules adsorbed on surfaces. AIP Conf. Proc. 204, 118–130 (1990).

    Article  ADS  Google Scholar 

  30. Palmer, R. E. & Rous, P. J. Resonances in electron scattering by molecules on surfaces. Rev. Mod. Phys. 64, 383–440 (1992).

    Article  ADS  Google Scholar 

  31. Teillet-Billy, D. & Gauyacq, J. P. Resonant electron scattering by molecules adsorbed on metal surfaces: angular aspects. Nucl. Instrum. Meth. B 101, 88–92 (1995).

    Article  ADS  Google Scholar 

  32. Sanche, L. Low-energy electron scattering from molecules on surfaces. J. Phys. B 23, 1597–1624 (1990).

    Article  ADS  Google Scholar 

  33. Bartolucci, F. & Franchy, R. EELS of negative-ion resonances: N2 films on Ag(110) at 15 K. Surf. Sci. 368, 27–37 (1996).

    Article  ADS  Google Scholar 

  34. Berman, M., Estrada, H., Cederbaum, L. S. & Domcke, W. Nuclear dynamics in resonant electron-molecule scattering beyond the local approximation: the 2.3-eV shape resonance in N2. Phys. Rev. A 28, 1363–1381 (1983).

    Article  ADS  Google Scholar 

  35. Herzenberg, A. Oscillatory energy dependence of resonant electron-molecule scattering. J. Phys. B 1, 548 (1968).

    Article  ADS  Google Scholar 

  36. Avouris, P. & Demuth, J. Electron energy loss spectroscopy in the study of surfaces. Annu. Rev. Phys. Chem. 35, 49–73 (1984).

    Article  ADS  Google Scholar 

  37. Avouris, P. & Persson, B. N. J. Excited states at metal surfaces and their non-radiative relaxation. J. Phys. Chem. 88, 837–848 (1984).

    Article  Google Scholar 

  38. Newns, D. M. Self-consistent model of hydrogen chemisorption. Phys. Rev. 178, 1123–1135 (1969).

    Article  ADS  Google Scholar 

  39. Otto, A. The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc. 36, 497–509 (2005).

    Article  ADS  Google Scholar 

  40. Pinchuk, A. & Kreibig, U. Interface decay channel of particle surface plasmon resonance. N. J. Phys. 5, 151 (2003).

    Article  Google Scholar 

  41. Lang, N. D. & Williams, A. R. Theory of atomic chemisorption on simple metals. Phys. Rev. B 18, 616–636 (1978).

    Article  ADS  Google Scholar 

  42. Tobin, R. G. Mechanisms of adsorbate-induced surface resistivity––experimental and theoretical developments. Surf. Sci. 502-503, 374–387 (2002).

    Article  ADS  Google Scholar 

  43. Grabhorn, H., Otto, A., Schumacher, D. & Persson, B. N. J. Variation of the DC-resistance of smooth and atomically rough silver films during exposure to C2H6 and C2H4. Surf. Sci. 264, 327–340 (1992).

    Article  ADS  Google Scholar 

  44. Ke, Y. et al. Resistivity of thin Cu films with surface roughness. Phys. Rev. B 79, 155406 (2009).

    Article  ADS  Google Scholar 

  45. Winkes, H., Schumacher, D. & Otto, A. Surface resistance measurements at the metal/electrolyte interface of Ag(100) and Ag(111) thin film electrodes. Surf. Sci. 400, 44–53 (1998).

    Article  ADS  Google Scholar 

  46. Westcott, S. L., Averitt, R. D., Wolfgang, J. A., Nordlander, P. & Halas, N. J. Adsorbate-induced quenching of hot electrons in gold core−shell nanoparticles. J. Phys. Chem. B 105, 9913–9917 (2001).

    Article  Google Scholar 

  47. Liu, C. & Tobin, R. G. Bonding-site dependence of surface resistivity: CO on epitaxial Cu(100) films. J. Chem. Phys. 126, 124705 (2007).

    Article  ADS  Google Scholar 

  48. Holzapfel, C., Akemann, W., Schumacher, D. & Otto, A. Variations of DC-resistance and SERS intensity during exposure of cold-deposited silver films. Surf. Sci. 227, 123–128 (1990).

    Article  ADS  Google Scholar 

  49. Ahmadi, K., Wu, D., Dole, N., Monteiro, O. R. & Brankovic, S. R. Tuning surface chemoresistivity of Au ultrathin films using metal deposition via surface-limited redox replacement of the underpotentially deposited Pb monolayer. ACS Sens. 4, 2442–2449 (2019).

    Article  Google Scholar 

  50. Manjavacas, A., Liu, J. G., Kulkarni, V. & Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014).

    Article  Google Scholar 

  51. Gallinet, B., Siegfried, T., Sigg, H., Nordlander, P. & Martin, O. J. F. Plasmonic radiance: probing structure at the Ångström scale with visible light. Nano Lett. 13, 497–503 (2013).

    Article  ADS  Google Scholar 

  52. Liu, J. G., Zhang, H., Link, S. & Nordlander, P. Relaxation of plasmon-induced hot carriers. ACS Photon. 5, 2584–2595 (2018).

    Article  Google Scholar 

  53. Wu, S. et al. The connection between plasmon decay dynamics and the surface enhanced Raman spectroscopy background: inelastic scattering from non-thermal and hot carriers. J. Appl. Phys. 129, 173103 (2021).

    Article  ADS  Google Scholar 

  54. Beane, G., Brown, B. S., Devkota, T. & Hartland, G. V. Light-like group velocities and long lifetimes for leaky surface plasmon polaritons in noble metal nanostripes. J. Phys. Chem. C 123, 15729–15737 (2019).

    Article  Google Scholar 

  55. Kreibig, U. & Vollmer, M. in Optical Properties of Metal Clusters (eds Kreibig, U. & Vollmer, M.) 13–201 (Springer, 1995).

  56. Kreibig, U. & Vollmer, M. in Optical Properties of Metal Clusters (eds Kreibig, U. & Vollmer, M.) 275–436 (Springer, 1995).

  57. Hövel, H., Fritz, S., Hilger, A., Kreibig, U. & Vollmer, M. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B 48, 18178–18188 (1993).

    Article  ADS  Google Scholar 

  58. Khurgin, J. B., Petrov, A., Eich, M. & Uskov, A. V. Direct plasmonic excitation of the hybridized surface states in metal nanoparticles. ACS Photon. 8, 2041–2049 (2021).

    Article  Google Scholar 

  59. Chang, E. S., Antoni, Th., Jung, K. & Ehrhardt, H. Coherent resonance and dipole scattering in rotational excitation of molecules by slow electrons. Phys. Rev. A 30, 2086–2088 (1984).

  60. Kim, Y., Ji, S. & Nam, J.-M. A chemist’s view on electronic and steric effects of surface ligands on plasmonic metal nanostructures. Acc. Chem. Res. 56, 2139–2150 (2023).

    Article  Google Scholar 

  61. Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018).

    Article  ADS  Google Scholar 

  62. Oksenberg, E. et al. Energy-resolved plasmonic chemistry in individual nanoreactors. Nat. Nanotechnol. 16, 1378–1385 (2021).

    Article  ADS  Google Scholar 

  63. Dong, Y., Hu, C., Xiong, H., Long, R. & Xiong, Y. Plasmonic catalysis: new opportunity for selective chemical bond evolution. ACS Catal. 13, 6730–6743 (2023).

    Article  Google Scholar 

  64. Kiani, F. et al. Transport and interfacial injection of d-band hot holes control plasmonic chemistry. ACS Energy Lett. 8, 4242–4250 (2023).

    Article  Google Scholar 

  65. Wu, K., Chen, J., McBride, J. R. & Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015).

    Article  ADS  Google Scholar 

  66. Hou, B., Thoss, M., Banin, U. & Rabani, E. Incoherent nonadiabatic to coherent adiabatic transition of electron transfer in colloidal quantum dot molecules. Nat. Commun. 14, 3073 (2023).

  67. Zhang, Q. et al. Real-time observation of two distinctive non-thermalized hot electron dynamics at MXene/molecule interfaces. Nat. Commun. 15, 4406 (2024).

  68. Petek, H. Photoexcitation of adsorbates on metal surfaces: One-step or three-step. J. Chem. Phys. 137, 091704 (2012).

  69. De Sio, A. & Lienau, C. Vibronic coupling in organic semiconductors for photovoltaics. Phys. Chem. Chem. Phys. 19, 18813–18830 (2017).

  70. Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010).

  71. Wang, S., Scholes, G. D. & Hsu, L.-Y. Coherent-to-incoherent transition of molecular fluorescence controlled by surface plasmon polaritons. J. Phys. Chem. Lett. 11, 5948–5955 (2020).

  72. Kato, T., Tanaka, T., Yajima, T. & Uchida, K. Temperature dependence of resistivity increases induced by thiols adsorption in gold nanosheets. Jpn. J. Appl. Phys. 60, SBBH13 (2021).

    Article  Google Scholar 

  73. Brown, B. S. & Hartland, G. V. Chemical interface damping for propagating surface plasmon polaritons in gold nanostripes. J. Chem. Phys. 152, 024707 (2020).

    Article  Google Scholar 

  74. Stefancu, A. et al. Halide–metal complexes at plasmonic interfaces create new decay pathways for plasmons and excited molecules. ACS Photon. 9, 895–904 (2022).

    Article  Google Scholar 

  75. Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).

    Article  Google Scholar 

  76. Schürmann, R. et al. Microscopic understanding of reaction rates observed in plasmon chemistry of nanoparticle–ligand systems. J. Phys. Chem. C 126, 5333–5342 (2022).

    Article  Google Scholar 

  77. Kogikoski, S. Jr., Dutta, A. & Bald, I. Spatial separation of plasmonic hot-electron generation and a hydrodehalogenation reaction center using a DNA wire. ACS Nano 15, 20562–20573 (2021).

    Article  Google Scholar 

  78. Stefancu, A. et al. Fermi level equilibration at the metal–molecule interface in plasmonic systems. Nano Lett. 21, 6592–6599 (2021).

    Article  ADS  Google Scholar 

  79. Le Ru, E. & Etchegoin, P. G. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, 2009).

  80. Neuman, T., Aizpurua, J. & Esteban, R. Quantum theory of surface-enhanced resonant Raman scattering (SERRS) of molecules in strongly coupled plasmon–exciton systems. Nanophotonics, 9, 295–308 (2020).

  81. Neuman, T., Esteban, R., Giedke, G., Schmidt, M. K. & Aizpurua, J. Quantum description of surface-enhanced resonant Raman scattering within a hybrid-optomechanical model. Phys. Rev. A 100, 043422 (2019).

    Article  ADS  Google Scholar 

  82. Li, P. et al. Investigation of charge-transfer between a 4-mercaptobenzoic acid monolayer and TiO2 nanoparticles under high pressure using surface-enhanced Raman scattering. Chem. Commun. 54, 6280–6283 (2018).

    Article  ADS  Google Scholar 

  83. Wang, X. et al. Reduced charge-transfer threshold in dye-sensitized solar cells with an Au@Ag/N3/n-TiO2 structure as revealed by surface-enhanced Raman scattering. J. Phys. Chem. C 122, 12748–12760 (2018).

    Article  ADS  Google Scholar 

  84. Lindquist, N. C., de Albuquerque, C. D. L., Sobral-Filho, R. G., Paci, I. & Brolo, A. G. High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles. Nat. Nanotechnol. 14, 981–987 (2019).

    Article  ADS  Google Scholar 

  85. Almehmadi, L. M., Curley, S. M., Tokranova, N. A., Tenenbaum, S. A. & Lednev, I. K. Surface enhanced Raman spectroscopy for single molecule protein detection. Sci. Rep. 9, 12356 (2019).

    Article  ADS  Google Scholar 

  86. Le Ru, E. C. & Etchegoin, P. G. Vibrational pumping and heating under SERS conditions: fact or myth? Faraday Discuss. 132, 63–75 (2006).

    Article  ADS  Google Scholar 

  87. Kozich, V. & Werncke, W. The vibrational pumping mechanism in surface-enhanced Raman scattering: a subpicosecond time-resolved study. J. Phys. Chem. C 114, 10484–10488 (2010).

    Article  Google Scholar 

  88. Boerigter, C., Aslam, U. & Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 10, 6108–6115 (2016).

    Article  Google Scholar 

  89. Boerigter, C., Campana, R., Morabito, M. & Linic, S. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 7, 10545 (2016).

    Article  ADS  Google Scholar 

  90. Fojt, J., Rossi, T. P., Kuisma, M. & Erhart, P. Hot-carrier transfer across a nanoparticle–molecule junction: the importance of orbital hybridization and level alignment. Nano Lett. 22, 8786–8792 (2022).

    Article  ADS  Google Scholar 

  91. Reddy, H. et al. Determining plasmonic hot-carrier energy distributions via single-molecule transport measurements. Science 369, 423–426 (2020).

    Article  ADS  Google Scholar 

  92. Huang, P. & Carter, E. A. Self-consistent embedding theory for locally correlated configuration interaction wave functions in condensed matter. J. Chem. Phys. 125, 084102 (2006).

    Article  ADS  Google Scholar 

  93. Sundararaman, R., Narang, P., Jermyn, A. S., Goddard Iii, W. A. & Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014).

    Article  ADS  Google Scholar 

  94. Jermyn, A. S. et al. Transport of hot carriers in plasmonic nanostructures. Phys. Rev. Mater. 3, 075201 (2019).

    Article  Google Scholar 

  95. Vanzan, M., Gil, G., Castaldo, D., Nordlander, P. & Corni, S. Energy transfer to molecular adsorbates by transient hot electron spillover. Nano Lett. 23, 2719–2725 (2023).

    Article  ADS  Google Scholar 

  96. João, S. M., Jin, H. & Lischner, J. C. Atomistic theory of hot-carrier relaxation in large plasmonic nanoparticles. J. Phys. Chem. C 127, 23296–23302 (2023).

    Article  Google Scholar 

  97. Wu, S., Chen, Y. & Gao, S. Plasmonic photocatalysis with nonthermalized hot carriers. Phys. Rev. Lett. 129, 086801 (2022).

    Article  ADS  Google Scholar 

  98. Cushing, S. K. et al. Tunable nonthermal distribution of hot electrons in a semiconductor injected from a plasmonic gold nanostructure. ACS Nano 12, 7117–7126 (2018).

    Article  Google Scholar 

  99. Habib, A., Lubbers, N., Tretiak, S. & Nebgen, B. Machine learning models capture plasmon dynamics in Ag nanoparticles. J. Phys. Chem. A 127, 3768–3778 (2023).

    Article  Google Scholar 

  100. Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nat. Commun. 12, 398 (2021).

    Article  ADS  Google Scholar 

  101. Seemala, B. et al. Plasmon-mediated catalytic O2 dissociation on Ag nanostructures: hot electrons or near fields? ACS Energy Lett. 4, 1803–1809 (2019).

    Article  Google Scholar 

  102. Philpott, M. R. Effect of surface plasmons on transitions in molecules. J. Chem. Phys. 62, 1812–1817 (1975).

    Article  ADS  Google Scholar 

  103. Liu, G. L., Long, Y.-T., Choi, Y., Kang, T. & Lee, L. P. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat. Methods 4, 1015–1017 (2007).

    Article  Google Scholar 

  104. Collins, S. S. E. et al. Plasmon energy transfer in hybrid nanoantennas. ACS Nano. 15, 9522–9530 (2021).

  105. Vijay, S. et al. Dipole-field interactions determine the CO2 reduction activity of 2D Fe–N–C single-atom catalysts. ACS Catal. 10, 7826–7835 (2020).

    Article  Google Scholar 

  106. Vijay, S. et al. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat. Catal. 4, 1024–1031 (2021).

    Article  Google Scholar 

  107. Chan, K. A few basic concepts in electrochemical carbon dioxide reduction. Nat. Commun. 11, 5954 (2020).

    Article  ADS  Google Scholar 

  108. Ringe, S. et al. Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on gold. Nat. Commun. 11, 33 (2020).

    Article  ADS  Google Scholar 

  109. Cai, C. et al. Atomically local electric field induced interface water reorientation for alkaline hydrogen evolution reaction. Angew. Chem. Int. Ed. 62, e202300873 (2023).

    Article  Google Scholar 

  110. Corson, E. R. et al. In situ ATR–SEIRAS of carbon dioxide reduction at a plasmonic silver cathode. J. Am. Chem. Soc. 142, 11750–11762 (2020).

    Article  Google Scholar 

  111. Landaeta, E., Kadosh, N. I. & Schultz, Z. D. Mechanistic study of plasmon-assisted in situ photoelectrochemical CO2 reduction to acetate with a Ag/Cu2O nanodendrite electrode. ACS Catal. 13, 1638–1648 (2023).

    Article  Google Scholar 

  112. Ward, D. R., Hüser, F., Pauly, F., Cuevas, J. C. & Natelson, D. Optical rectification and field enhancement in a plasmonic nanogap. Nat. Nanotechnol. 5, 732–736 (2010).

    Article  ADS  Google Scholar 

  113. Nelson, D. A. & Schultz, Z. D. The impact of optically rectified fields on plasmonic electrocatalysis. Faraday Discuss. 214, 465–477 (2019).

    Article  ADS  Google Scholar 

  114. Ren, W., Xu, A., Chan, K. & Hu, X. A cation concentration gradient approach to tune the selectivity and activity of CO2 electroreduction. Angew. Chem. Int. Ed. 61, e202214173 (2022).

    Article  Google Scholar 

  115. Peiris, E. et al. Plasmonic switching of the reaction pathway: visible-light irradiation varies the reactant concentration at the solid–solution interface of a gold–cobalt catalyst. Angew. Chem. Int. Ed. 58, 12032–12036 (2019).

    Article  Google Scholar 

  116. Han, P. et al. Promoting Ni(II) catalysis with plasmonic antennas. Chem 5, 2879–2899 (2019).

    Article  Google Scholar 

  117. Saalfrank, P. Photodesorption of neutrals from metal surfaces: a wave packet study. Chem. Phys. 193, 119–139 (1995).

  118. Herran, M. et al. Plasmonic bimetallic two-dimensional supercrystals for H2 generation. Nat. Catal. 6, 1205–1214 (2023).

    Article  Google Scholar 

  119. Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    Article  ADS  Google Scholar 

  120. Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8, 247–251 (2013).

    Article  ADS  Google Scholar 

  121. Vadai, M., Angell, D. K., Hayee, F., Sytwu, K. & Dionne, J. A. In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles. Nat. Commun. 9, 4658 (2018).

    Article  ADS  Google Scholar 

  122. Yuan, Y. et al. Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination. Science 378, 889–893 (2022).

    Article  ADS  Google Scholar 

  123. Maher, R. C., Galloway, C. M., Le Ru, E. C., Cohen, L. F. & Etchegoin, P. G. Vibrational pumping in surface enhanced Raman scattering (SERS). Chem. Soc. Rev. 37, 965–979 (2008).

    Article  Google Scholar 

  124. Otto, A. Theory of first layer and single molecule surface enhanced Raman scattering (SERS). Phys. Stat. Solidi A 188, 1455–1470 (2001).

    Article  ADS  Google Scholar 

  125. Otto, A., Akemann, W. & Pucci, A. Normal bands in surface-enhanced Raman scattering (SERS) and their relation to the electron-hole pair excitation background in SERS. Isr. J. Chem. 46, 307–315 (2006).

    Google Scholar 

  126. Wu, S. et al. The connection between plasmon decay dynamics and the surface enhanced Raman spectroscopy background: Inelastic scattering from non-thermal and hot carriers. J. Appl. Phys. 129, 173103 (2021).

  127. Zhu, Y., Natelson, D. & Cui, L. Probing energy dissipation in molecular-scale junctions via surface enhanced Raman spectroscopy: vibrational pumping and hot carrier enhanced light emission. J. Phys. Condens. Matter 33, 134001 (2021).

    Article  ADS  Google Scholar 

  128. Bayle, M. et al. Experimental investigation of the vibrational density of states and electronic excitations in metallic nanocrystals. Phys. Rev. B 89, 195402 (2014).

    Article  ADS  Google Scholar 

  129. Zangwill, A. Physics at Surfaces (Cambridge Univ. Press, 1988).

  130. Avouris, P., Lyo, I. W. & Molinàs-Mata, P. STM studies of the interaction of surface state electrons on metals with steps and adsorbates. Chem. Phys. Lett. 240, 423–428 (1995).

    Article  ADS  Google Scholar 

  131. Koch, E. E., Barth, J., Fock, J. H., Goldmann, A. & Otto, A. Surface photoemission in the 4d band from polycrystalline silver surfaces. Solid State Commun. 42, 897–901 (1982).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding and support from the Deutsche Forschungsgemeinschaft (DFG) under Germany´s Excellence Strategy—grant number EXC 2089/1—390776260 e-conversion excellence research cluster, the Bavarian programme Solar Technologies Go Hybrid (SolTech), the Center for NanoScience (CeNS) and the European Commission through the ERC Starting Grant CATALIGHT (grant number 802989). A.S. acknowledges support from the Alexander von Humboldt foundation. P.N. and N.J.H. acknowledge support from the Robert A. Welch Foundation under grant numbers C-1222 and C-1220. N.J.H., P.N. and E.C. acknowledge the Institute for Advanced Study (IAS) from Technische Universität München (TUM) for financing the focus group on ‘Sustainable photocatalysis using plasmons and 2D materials (SusPhuP2M)’ as part of the Hans Fisher Senior Fellowships programme. We thank J. Knott for assistance with the figures.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the Review.

Corresponding author

Correspondence to Emiliano Cortes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Jennifer Dionne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefancu, A., Halas, N.J., Nordlander, P. et al. Electronic excitations at the plasmon–molecule interface. Nat. Phys. (2024). https://ift.tt/poyWhdt

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://ift.tt/poyWhdt

Adblock test (Why?)



"interface" - Google News
July 15, 2024 at 04:15PM
https://ift.tt/RrlTcE5

Electronic excitations at the plasmon–molecule interface - Nature.com
"interface" - Google News
https://ift.tt/V1vi0M2
https://ift.tt/2PBqMxn

Bagikan Berita Ini

0 Response to "Electronic excitations at the plasmon–molecule interface - Nature.com"

Post a Comment

Powered by Blogger.