Search

Brain–computer interfaces for neuropsychiatric disorders - Nature.com

kembaliui.blogspot.com

Abstract

Neuropsychiatric disorders such as major depression are a leading cause of disability worldwide with standard treatments, including psychotherapy or medication, failing many patients. Deep brain stimulation holds great potential as an alternative therapy for treatment-resistant cases; however, improving the efficacy of stimulation therapy for neuropsychiatric disorders is hindered by the complexity as well as inter-individual and intra-individual variability in symptom manifestations, neural representations and response to therapy. These challenges motivate the development of brain–computer interfaces (BCIs) that can decode the symptom state of a patient from brain activity as feedback to personalize the stimulation therapy in closed loop. Here we review progress on developing BCIs for neuropsychiatric care, focusing on neural biomarkers for decoding symptom states, stimulation site selection and closed-loop stimulation strategies. Moreover, we highlight promising data-driven machine learning and system design approaches and provide a roadmap for realizing these BCIs. Finally, we review current limitations, discuss extensions to other treatment modalities and outline the required scientific and technological advances. These advances can enable next-generation BCIs that provide an alternative therapy for treatment-resistant neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Closed-loop, personalized brain–computer interfaces for neuropsychiatric care.
Fig. 2: Machine learning methods for data-driven biomarker discovery and brain–computer interface decoder design.
Fig. 3: Design of the stimulation strategy.

References

  1. Ferrari, A. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 9, 137–150 (2022).

    Article  Google Scholar 

  2. Whiteford, H. A. et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 382, 1575–1586 (2013).

    Article  Google Scholar 

  3. Rush, A. J. et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am. J. Psychiatry 163, 1905–1917 (2006).

    Article  Google Scholar 

  4. Mrazek, D. A., Hornberger, J. C., Altar, C. A. & Degtiar, I. A review of the clinical, economic, and societal burden of treatment-resistant depression: 1996–2013. Psychiatr. Serv. 65, 977–987 (2014).

    Article  Google Scholar 

  5. Olchanski, N. et al. The economic burden of treatment-resistant depression. Clin. Ther. 35, 512–522 (2013).

    Article  Google Scholar 

  6. Greenberg, P. E., Fournier, A. A., Sisitsky, T., Pike, C. T. & Kessler, R. C. The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J. Clin. Psychiatry 76, 155–162 (2015).

    Article  Google Scholar 

  7. Nuttin, B., Cosyns, P., Demeulemeester, H., Gybels, J. & Meyerson, B. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive–compulsive disorder. Lancet 354, 1526 (1999).

    Article  Google Scholar 

  8. Fontaine, D. et al. Effect of subthalamic nucleus stimulation on obsessive–compulsive disorder in a patient with Parkinson disease: case report. J. Neurosurg. 100, 1084–1086 (2004).

    Article  Google Scholar 

  9. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    Article  Google Scholar 

  10. Greenberg, B. D. et al. Three-year outcomes in deep brain stimulation for highly resistant obsessive–compulsive disorder. Neuropsychopharmacology 31, 2384–2393 (2006).

    Article  Google Scholar 

  11. Schlaepfer, T. E. et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33, 368–377 (2007).

    Article  Google Scholar 

  12. Lozano, A. M. et al. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol. Psychiatry 64, 461–467 (2008).

    Article  Google Scholar 

  13. Mallet, L. et al. Subthalamic nucleus stimulation in severe obsessive–compulsive disorder. N. Engl. J. Med. 359, 2121–2134 (2008).

    Article  Google Scholar 

  14. Malone, D. A. et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol. Psychiatry 65, 267–275 (2009).

    Article  Google Scholar 

  15. Denys, D. et al. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive–compulsive disorder. Arch. Gen. Psychiatry 67, 1061–1068 (2010).

    Article  Google Scholar 

  16. Sartorius, A. et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol. Psychiatry 67, e9–e11 (2010).

    Article  Google Scholar 

  17. Schlaepfer, T. E., Bewernick, B. H., Kayser, S., Mädler, B. & Coenen, V. A. Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol. Psychiatry 73, 1204–1212 (2013).

    Article  Google Scholar 

  18. Luyten, L., Hendrickx, S., Raymaekers, S., Gabriëls, L. & Nuttin, B. Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive–compulsive disorder. Mol. Psychiatry 21, 1272–1280 (2016).

    Article  Google Scholar 

  19. Riva-Posse, P. et al. A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol. Psychiatry 23, 843–849 (2017).

    Article  Google Scholar 

  20. Fenoy, A. J. et al. A longitudinal study on deep brain stimulation of the medial forebrain bundle for treatment-resistant depression. Transl. Psychiatry 8, 111 (2018).

    Article  Google Scholar 

  21. Rao, V. R. et al. Direct electrical stimulation of lateral orbitofrontal cortex acutely improves mood in individuals with symptoms of depression. Curr. Biol. 28, 3893–3902.e4 (2018).

    Article  Google Scholar 

  22. Crowell, A. L. et al. Long-term outcomes of subcallosal cingulate deep brain stimulation for treatment-resistant depression. Am. J. Psychiatry 176, 949–956 (2019).

    Article  Google Scholar 

  23. Denys, D. et al. Efficacy of deep brain stimulation of the ventral anterior limb of the internal capsule for refractory obsessive–compulsive disorder: a clinical cohort of 70 patients. Am. J. Psychiatry 177, 265–271 (2020).

    Article  Google Scholar 

  24. Graat, I. et al. Long-term outcome of deep brain stimulation of the ventral part of the anterior limb of the internal capsule in a cohort of 50 patients with treatment-refractory obsessive–compulsive disorder. Biol. Psychiatry 90, 714–720 (2021).

    Article  Google Scholar 

  25. Menchón, J. M. et al. A prospective international multi-center study on safety and efficacy of deep brain stimulation for resistant obsessive–compulsive disorder. Mol. Psychiatry 26, 1234–1247 (2021).

    Article  Google Scholar 

  26. Scangos, K. W. et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat. Med. 27, 1696–1700 (2021).

    Article  Google Scholar 

  27. Shivacharan, R. S. et al. Pilot study of responsive nucleus accumbens deep brain stimulation for loss-of-control eating. Nat. Med. 28, 1791–1796 (2022).

    Article  Google Scholar 

  28. Gill, J. L. et al. A pilot study of closed-loop neuromodulation for treatment-resistant post-traumatic stress disorder. Nat. Commun. 14, 2997 (2023).

    Article  Google Scholar 

  29. Dougherty, D. D. et al. A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression. Biol. Psychiatry 78, 240–248 (2015).

    Article  Google Scholar 

  30. Holtzheimer, P. E. et al. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry 4, 839–849 (2017).

    Article  Google Scholar 

  31. Widge, A. S. et al. Treating refractory mental illness with closed-loop brain stimulation: progress towards a patient-specific transdiagnostic approach. Exp. Neurol. 287, 461–472 (2017).

    Article  Google Scholar 

  32. Provenza, N. R. et al. The case for adaptive neuromodulation to treat severe intractable mental disorders. Front. Neurosci. 13, 152 (2019).

    Article  Google Scholar 

  33. Figee, M. et al. Deep brain stimulation for depression. Neurotherapeutics 19, 1229–1245 (2022).

    Article  Google Scholar 

  34. Drevets, W. C. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr. Opin. Neurobiol. 11, 240–249 (2001).

    Article  Google Scholar 

  35. Williams, L. M. Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation. Depress. Anxiety 34, 9–24 (2017).

    Article  Google Scholar 

  36. Baldermann, J. C. et al. Connectomic deep brain stimulation for obsessive–compulsive disorder. Biol. Psychiatry 90, 678–688 (2021).

    Article  Google Scholar 

  37. Li, N. et al. A unified connectomic target for deep brain stimulation in obsessive–compulsive disorder. Nat. Commun. 11, 3364 (2020).

    Article  Google Scholar 

  38. Riva-Posse, P. et al. Defining critical white matter pathways mediating successful subcallosal cingulate deep brain stimulation for treatment-resistant depression. Biol. Psychiatry 76, 963–969 (2014).

    Article  Google Scholar 

  39. Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F. & Tendolkar, I. Resting-state functional connectivity in major depressive disorder: a review. Neurosci. Biobehav. Rev. 56, 330–344 (2015).

    Article  Google Scholar 

  40. Makris, N. et al. Variability and anatomical specificity of the orbitofrontothalamic fibers of passage in the ventral capsule/ventral striatum (VC/VS): precision care for patient-specific tractography-guided targeting of deep brain stimulation (DBS) in obsessive compulsive disorder (OCD). Brain Imaging Behav. 10, 1054–1067 (2016).

    Article  Google Scholar 

  41. Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23, 28–38 (2017).

    Article  Google Scholar 

  42. Dunlop, B. W. et al. Functional connectivity of the subcallosal cingulate cortex and differential outcomes to treatment with cognitive–behavioral therapy or antidepressant medication for major depressive disorder. Am. J. Psychiatry 174, 533–545 (2017).

    Article  Google Scholar 

  43. Sani, O. G. et al. Mood variations decoded from multi-site intracranial human brain activity. Nat. Biotechnol. 36, 954–961 (2018).

    Article  Google Scholar 

  44. Shanechi, M. M. Brain–machine interfaces from motor to mood. Nat. Neurosci. 22, 1554–1564 (2019).

    Article  Google Scholar 

  45. Gray, J. P., Müller, V. I., Eickhoff, S. B. & Fox, P. T. Multimodal abnormalities of brain structure and function in major depressive disorder: a meta-analysis of neuroimaging studies. Am. J. Psychiatry 177, 422–434 (2020).

    Article  Google Scholar 

  46. Bijanki, K. R. et al. Defining functional brain networks underlying obsessive–compulsive disorder (OCD) using treatment-induced neuroimaging changes: a systematic review of the literature. J. Neurol. Neurosurg. Psychiatry 92, 776–786 (2021).

    Article  Google Scholar 

  47. Kohoutová, L. et al. Individual variability in brain representations of pain. Nat. Neurosci. 25, 749–759 (2022).

    Article  Google Scholar 

  48. Xiao, J. et al. Decoding depression severity from intracranial neural activity. Biol. Psychiatry 94, 445–453 (2023).

    Article  Google Scholar 

  49. Scangos, K. W., State, M. W., Miller, A. H., Baker, J. T. & Williams, L. M. New and emerging approaches to treat psychiatric disorders. Nat. Med. 29, 317–333 (2023).

    Article  Google Scholar 

  50. Sheth, S. A. et al. Deep brain stimulation for depression informed by intracranial recordings. Biol. Psychiatry 92, 246–251 (2022).

    Article  Google Scholar 

  51. Kirkby, L. A. et al. An amygdala–hippocampus subnetwork that encodes variation in human mood. Cell 175, 1688–1700.e14 (2018).

    Article  Google Scholar 

  52. Basu, I. et al. Closed-loop enhancement and neural decoding of cognitive control in humans. Nat. Biomed. Eng. 7, 576–588 (2023).

    Article  Google Scholar 

  53. Sendi, M. S. E. et al. Intraoperative neural signals predict rapid antidepressant effects of deep brain stimulation. Transl. Psychiatry 11, 551 (2021).

    Article  Google Scholar 

  54. Shirvalkar, P. et al. First-in-human prediction of chronic pain state using intracranial neural biomarkers. Nat. Neurosci. 26, 1090–1099 (2023).

    Article  Google Scholar 

  55. Nho, Y.-H. et al. Responsive deep brain stimulation guided by ventral striatal electrophysiology of obsession durably ameliorates compulsion. Neuron 112, 73–83.e4 (2024).

    Article  Google Scholar 

  56. Kupfer, D. J., Frank, E. & Phillips, M. L. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet 379, 1045–1055 (2012).

    Article  Google Scholar 

  57. Boccard, S. G. J., Pereira, E. A. C. & Aziz, T. Z. Deep brain stimulation for chronic pain. J. Clin. Neurosci. 22, 1537–1543 (2015).

    Article  Google Scholar 

  58. Shirvalkar, P., Veuthey, T. L., Dawes, H. E. & Chang, E. F. Closed-loop deep brain stimulation for refractory chronic pain. Front. Comput. Neurosci. 12, 18 (2018).

    Article  Google Scholar 

  59. Lipsman, N. et al. Deep brain stimulation of the subcallosal cingulate for treatment-refractory anorexia nervosa: 1 year follow-up of an open-label trial. Lancet Psychiatry 4, 285–294 (2017).

    Article  Google Scholar 

  60. Vloo, P. D. et al. Long-term follow-up of deep brain stimulation for anorexia nervosa. J. Neurol. Neurosurg. Psychiatry 92, 1135–1136 (2021).

    Article  Google Scholar 

  61. Bina, R. W. & Langevin, J. P. Closed loop deep brain stimulation for PTSD, addiction, and disorders of affective facial interpretation: review and discussion of potential biomarkers and stimulation paradigms. Front. Neurosci. 12, 300 (2018).

    Article  Google Scholar 

  62. Langevin, J.-P. et al. Deep brain stimulation of the basolateral amygdala for treatment-refractory posttraumatic stress disorder. Biol. Psychiatry 79, e82–e84 (2016).

    Article  Google Scholar 

  63. de Hemptinne, C. et al. Prefrontal physiomarkers of anxiety and depression in Parkinson’s disease. Front. Neurosci. 15, 1337 (2021).

    Article  Google Scholar 

  64. Fridgeirsson, E. A. et al. Patient specific intracranial neural signatures of obsessions and compulsions in the ventral striatum. J. Neural Eng. https://doi.org/10.1088/1741-2552/acbee1 (2023).

  65. Montgomery, S. A. & Asberg, M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry J. Ment. Sci. 134, 382–389 (1979).

    Article  Google Scholar 

  66. Widge, A. S. et al. Patient-specific connectomic models correlate with, but do not reliably predict, outcomes in deep brain stimulation for obsessive–compulsive disorder. Neuropsychopharmacology 47, 965–972 (2022).

    Article  Google Scholar 

  67. Hamilton, M. Development of a rating scale for primary depressive illness. Br. J. Soc. Clin. Psychol. 6, 278–296 (1967).

    Article  Google Scholar 

  68. Nahum, M. et al. Immediate Mood Scaler: tracking symptoms of depression and anxiety using a novel mobile mood scale. JMIR MHealth UHealth 5, e44 (2017).

    Article  Google Scholar 

  69. Goodman, W. K. et al. The Yale–Brown Obsessive Compulsive Scale: I. development, use, and reliability. Arch. Gen. Psychiatry 46, 1006–1011 (1989).

    Article  Google Scholar 

  70. Provenza, N. R. et al. Long-term ecological assessment of intracranial electrophysiology synchronized to behavioral markers in obsessive–compulsive disorder. Nat. Med. 27, 2154–2164 (2021).

    Article  Google Scholar 

  71. Gadot, R. et al. Tractography-based modeling explains treatment outcomes in patients undergoing deep brain stimulation for obsessive–compulsive disorder. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2023.01.017 (2023).

  72. Haeffel, G. J. & Howard, G. S. Self-report: psychology’s four-letter word. Am. J. Psychol. 123, 181–188 (2010).

    Article  Google Scholar 

  73. Dang, J., King, K. M. & Inzlicht, M. Why are self-report and behavioral measures weakly correlated? Trends Cogn. Sci. 24, 267–269 (2020).

    Article  Google Scholar 

  74. Gibbons, R. D. et al. Development of a computerized adaptive test for depression. Arch. Gen. Psychiatry 69, 1104–1112 (2012).

    Article  Google Scholar 

  75. Sani, S., Busnello, J., Kochanski, R., Cohen, Y. & Gibbons, R. D. High-frequency measurement of depressive severity in a patient treated for severe treatment-resistant depression with deep-brain stimulation. Transl. Psychiatry 7, e1207 (2017).

    Article  Google Scholar 

  76. Ekman, P. & Friesen, W. V. Facial Action Coding System (Consulting Psychologists Press, 1977).

  77. Tao, J. & Tan, T. in Affective Computing and Intelligent Interaction (eds Tao, J., Tan, T. & Picard, R. W.) 981–995 (Springer, 2005).

  78. Weninger, F., Wöllmer, M. & Schuller, B. in Emotion Recognition (eds Konar, A. & Chakraborty, A.) 237–267 (John Wiley & Sons, 2015).

  79. Sullivan, C. R. P., Olsen, S. & Widge, A. S. Deep brain stimulation for psychiatric disorders: from focal brain targets to cognitive networks. NeuroImage 225, 117515 (2021).

    Article  Google Scholar 

  80. McTeague, L. M. et al. Identification of common neural circuit disruptions in cognitive control across psychiatric disorders. Am. J. Psychiatry 174, 676–685 (2017).

    Article  Google Scholar 

  81. Yousefi, A. et al. Decoding hidden cognitive states from behavior and physiology using a Bayesian approach. Neural Comput. 31, 1751–1788 (2019).

    Article  MathSciNet  Google Scholar 

  82. Cuthbert, B. N. & Insel, T. R. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med. 11, 126 (2013).

    Article  Google Scholar 

  83. Etkin, A. & Wager, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1488 (2007).

    Article  Google Scholar 

  84. Haber, S. N. et al. Circuits, networks, and neuropsychiatric disease: transitioning from anatomy to imaging. Biol. Psychiatry 87, 318–327 (2020).

    Article  Google Scholar 

  85. Siddiqi, S. H. et al. Brain stimulation and brain lesions converge on common causal circuits in neuropsychiatric disease. Nat. Hum. Behav. 5, 1707–1716 (2021).

    Article  Google Scholar 

  86. Mayberg, H. S. et al. Reciprocal limbic–cortical function and negative mood: converging PET findings in depression and normal sadness. Am. J. Psychiatry 156, 675–682 (1999).

    Article  Google Scholar 

  87. Scangos, K. W., Makhoul, G. S., Sugrue, L. P., Chang, E. F. & Krystal, A. D. State-dependent responses to intracranial brain stimulation in a patient with depression. Nat. Med. 27, 229–231 (2021).

    Article  Google Scholar 

  88. Ahmari, S. E. & Dougherty, D. D. Dissecting OCD circuits: from animal models to targeted treatments. Depress. Anxiety 32, 550–562 (2015).

    Article  Google Scholar 

  89. Fettes, P., Schulze, L. & Downar, J. Cortico–striatal–thalamic loop circuits of the orbitofrontal cortex: promising therapeutic targets in psychiatric illness. Front. Syst. Neurosci. 11, 25 (2017).

    Article  Google Scholar 

  90. Choi, K. S., Riva-Posse, P., Gross, R. E. & Mayberg, H. S. Mapping the ‘depression switch’ during intraoperative testing of subcallosal cingulate deep brain stimulation. JAMA Neurol. 72, 1252–1260 (2015).

    Article  Google Scholar 

  91. Starr, P. A. Totally implantable bidirectional neural prostheses: a flexible platform for innovation in neuromodulation. Front. Neurosci. 12, 619 (2018).

    Article  Google Scholar 

  92. Goyal, A. et al. The development of an implantable deep brain stimulation device with simultaneous chronic electrophysiological recording and stimulation in humans. Biosens. Bioelectron. 176, 112888 (2021).

    Article  Google Scholar 

  93. Allawala, A. et al. A novel framework for network-targeted neuropsychiatric deep brain stimulation. Neurosurgery 89, E116–E120 (2021).

    Article  Google Scholar 

  94. Scangos, K. W. et al. Pilot study of an intracranial electroencephalography biomarker of depressive symptoms in epilepsy. J. Neuropsychiatry Clin. Neurosci. 32, 185–190 (2020).

    Article  Google Scholar 

  95. Herrington, T. M., Cheng, J. J. & Eskandar, E. N. Mechanisms of deep brain stimulation. J. Neurophysiol. 115, 19–38 (2016).

    Article  Google Scholar 

  96. Ashkan, K., Rogers, P., Bergman, H. & Ughratdar, I. Insights into the mechanisms of deep brain stimulation. Nat. Rev. Neurol. 13, 548–554 (2017).

    Article  Google Scholar 

  97. van Hartevelt, T. J. et al. Neural plasticity in human brain connectivity: the effects of long term deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. PLoS ONE 9, e86496 (2014).

    Article  Google Scholar 

  98. Merola, A. et al. New frontiers for deep brain stimulation: directionality, sensing technologies, remote programming, robotic stereotactic assistance, asleep procedures, and connectomics. Front. Neurol. 12, 1149 (2021).

    Article  Google Scholar 

  99. Gilron, R. et al. Long-term wireless streaming of neural recordings for circuit discovery and adaptive stimulation in individuals with Parkinson’s disease. Nat. Biotechnol. 39, 1078–1085 (2021).

    Article  Google Scholar 

  100. Larkin, H. D. Apple Watch Parkinson disease symptom monitor is cleared. JAMA 328, 416 (2022).

    Google Scholar 

  101. Frank, A. C., Li, R., Peterson, B. S. & Narayanan, S. S. Wearable and mobile technologies for the evaluation and treatment of obsessive–compulsive disorder: scoping review. JMIR Ment. Health 10, e45572 (2023).

    Article  Google Scholar 

  102. Veerakumar, A. et al. Field potential 1/f activity in the subcallosal cingulate region as a candidate signal for monitoring deep brain stimulation for treatment-resistant depression. J. Neurophysiol. 122, 1023–1035 (2019).

    Article  Google Scholar 

  103. Alagapan, S. et al. Cingulate dynamics track depression recovery with deep brain stimulation. Nature 622, 130–138 (2023).

    Article  Google Scholar 

  104. Yang, Y., Sani, O. G., Chang, E. F. & Shanechi, M. M. Dynamic network modeling and dimensionality reduction for human ECoG activity. J. Neural Eng. 16, 056014 (2019).

    Article  Google Scholar 

  105. Yang, Y., Connolly, A. T. & Shanechi, M. M. A control-theoretic system identification framework and a real-time closed-loop clinical simulation testbed for electrical brain stimulation. J. Neural Eng. 15, 066007 (2018).

    Article  Google Scholar 

  106. Yang, Y. et al. Modelling and prediction of the dynamic responses of large-scale brain networks during direct electrical stimulation. Nat. Biomed. Eng. 5, 324–345 (2021).

    Article  Google Scholar 

  107. Lozano, A. M. et al. Deep brain stimulation: current challenges and future directions. Nat. Rev. Neurol. 15, 148–160 (2019).

    Article  Google Scholar 

  108. Grill, W. M., Norman, S. E. & Bellamkonda, R. V. Implanted neural interfaces: biochallenges and engineered solutions. Annu. Rev. Biomed. Eng. 11, 1–24 (2009).

    Article  Google Scholar 

  109. Downey, J. E., Schwed, N., Chase, S. M., Schwartz, A. B. & Collinger, J. L. Intracortical recording stability in human brain–computer interface users. J. Neural Eng. 15, 046016 (2018).

    Article  Google Scholar 

  110. Shenoy, K. V. & Carmena, J. M. Combining decoder design and neural adaptation in brain–machine interfaces. Neuron 84, 665–680 (2014).

    Article  Google Scholar 

  111. Degenhart, A. D. et al. Stabilization of a brain–computer interface via the alignment of low-dimensional spaces of neural activity. Nat. Biomed. Eng. 4, 672–685 (2020).

    Article  Google Scholar 

  112. Ahmadipour, P., Yang, Y., Chang, E. F. & Shanechi, M. M. Adaptive tracking of human ECoG network dynamics. J. Neural Eng. 18, 016011 (2021).

    Google Scholar 

  113. Yang, Y., Ahmadipour, P. & Shanechi, M. M. Adaptive latent state modeling of brain network dynamics with real-time learning rate optimization. J. Neural Eng. 18, 036013 (2021).

    Article  Google Scholar 

  114. Dabagia, M., Kording, K. P. & Dyer, E. L. Aligning latent representations of neural activity. Nat. Biomed. Eng. 7, 337–343 (2023).

    Article  Google Scholar 

  115. Hsieh, H.-L. & Shanechi, M. M. Optimizing the learning rate for adaptive estimation of neural encoding models. PLoS Comput. Biol. 14, e1006168 (2018).

    Article  Google Scholar 

  116. Harper, R. & Southern, J. A Bayesian deep learning framework for end-to-end prediction of emotion from heartbeat. IEEE Trans. Affect. Comput. 13, 985–991 (2022).

    Article  Google Scholar 

  117. Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  Google Scholar 

  118. van Westen, M. et al. Optimizing deep brain stimulation parameters in obsessive–compulsive disorder. Neuromodulation 24, 307–315 (2021).

    Article  Google Scholar 

  119. Gadot, R. et al. Efficacy of deep brain stimulation for treatment-resistant obsessive–compulsive disorder: systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 93, 1166–1173 (2022).

    Article  Google Scholar 

  120. Sheth, S. A. & Mayberg, H. S. Deep brain stimulation for obsessive–compulsive disorder and depression. Annu. Rev. Neurosci. https://doi.org/10.1146/annurev-neuro-110122-110434 (2023).

  121. Tsolaki, E., Espinoza, R. & Pouratian, N. Using probabilistic tractography to target the subcallosal cingulate cortex in patients with treatment resistant depression. Psychiatry Res. Neuroimaging 261, 72–74 (2017).

    Article  Google Scholar 

  122. Liebrand, L. C. et al. Individual white matter bundle trajectories are associated with deep brain stimulation response in obsessive–compulsive disorder. Brain Stimulat. 12, 353–360 (2019).

    Article  Google Scholar 

  123. Graat, I. et al. Tractography-based versus anatomical landmark-based targeting in vALIC deep brain stimulation for refractory obsessive–compulsive disorder. Mol. Psychiatry 27, 5206–5212 (2022).

    Article  Google Scholar 

  124. Haber, S. N., Yendiki, A. & Jbabdi, S. Four deep brain stimulation targets for obsessive–compulsive disorder: are they different? Biol. Psychiatry 90, 667–677 (2021).

    Article  Google Scholar 

  125. Stiso, J. et al. White matter network architecture guides direct electrical stimulation through optimal state transitions. Cell Rep. 28, 2554–2566.e7 (2019).

    Article  Google Scholar 

  126. Horn, A. & Kühn, A. A. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. NeuroImage 107, 127–135 (2015).

    Article  Google Scholar 

  127. Cagnan, H., Denison, T., McIntyre, C. & Brown, P. Emerging technologies for improved deep brain stimulation. Nat. Biotechnol. 37, 1024–1033 (2019).

    Article  Google Scholar 

  128. Raymaekers, S., Luyten, L., Bervoets, C., Gabriëls, L. & Nuttin, B. Deep brain stimulation for treatment-resistant major depressive disorder: a comparison of two targets and long-term follow-up. Transl. Psychiatry 7, e1251 (2017).

    Article  Google Scholar 

  129. Tyagi, H. et al. A randomized trial directly comparing ventral capsule and anteromedial subthalamic nucleus stimulation in obsessive–compulsive disorder: clinical and imaging evidence for dissociable effects. Biol. Psychiatry 85, 726–734 (2019).

    Article  Google Scholar 

  130. Olsen, S. T. et al. Case report of dual-site neurostimulation and chronic recording of cortico–striatal circuitry in a patient with treatment refractory obsessive compulsive disorder. Front. Hum. Neurosci. 14, 569973 (2020).

    Article  Google Scholar 

  131. Wu, H. et al. Local accumbens in vivo imaging during deep brain stimulation reveals a strategy-dependent amelioration of hedonic feeding. Proc. Natl Acad. Sci. USA 119, e2109269118 (2022).

    Article  Google Scholar 

  132. Van Overschee, P. & De Moor, B. Subspace Identification for Linear Systems (Springer US, 1996).

  133. McIntyre, C. C. & Hahn, P. J. Network perspectives on the mechanisms of deep brain stimulation. Neurobiol. Dis. 38, 329–337 (2010).

    Article  Google Scholar 

  134. Santaniello, S. et al. Therapeutic mechanisms of high-frequency stimulation in Parkinson’s disease and neural restoration via loop-based reinforcement. Proc. Natl Acad. Sci. USA 112, E586–E595 (2015).

    Article  Google Scholar 

  135. West, T. O. et al. Stimulating at the right time to recover network states in a model of the cortico–basal ganglia–thalamic circuit. PLoS Comput. Biol. 18, e1009887 (2022).

    Article  Google Scholar 

  136. Feng, X. J., Shea-Brown, E., Greenwald, B., Kosut, R. & Rabitz, H. Optimal deep brain stimulation of the subthalamic nucleus — a computational study. J. Comput. Neurosci. 23, 265–282 (2007).

    Article  MathSciNet  Google Scholar 

  137. Stefanescu, R. A., Shivakeshavan, R. G. & Talathi, S. S. Computational models of epilepsy. Seizure 21, 748–759 (2012).

    Article  Google Scholar 

  138. Sritharan, D. & Sarma, S. V. Fragility in dynamic networks: application to neural networks in the epileptic cortex. Neural Comput. 26, 2294–2327 (2014).

    Article  MathSciNet  Google Scholar 

  139. Brocker, D. T. et al. Optimized temporal pattern of brain stimulation designed by computational evolution. Sci. Transl. Med. 9, eaah3532 (2017).

    Article  Google Scholar 

  140. Liu, J., Khalil, H. K. & Oweiss, K. G. Model-based analysis and control of a network of basal ganglia spiking neurons in the normal and parkinsonian states. J. Neural Eng. 8, 045002 (2011).

    Article  Google Scholar 

  141. Santaniello, S., Fiengo, G., Glielmo, L. & Grill, W. M. Closed-loop control of deep brain stimulation: a simulation study. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 15–24 (2011).

    Article  Google Scholar 

  142. Millard, D. C., Wang, Q., Gollnick, C. A. & Stanley, G. B. System identification of the nonlinear dynamics in the thalamocortical circuit in response to patterned thalamic microstimulation in-vivo. J. Neural Eng. 10, 066011 (2013).

    Article  Google Scholar 

  143. Bolus, M. F., Willats, A. A., Whitmire, C. J., Rozell, C. J. & Stanley, G. B. Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo. J. Neural Eng. 15, 026011 (2018).

    Article  Google Scholar 

  144. Ljung, L. System Identification: Theory for the User (Prentice-Hall, Inc., 1986).

  145. Murphy, K. P. Machine Learning: A Probabilistic Perspective (MIT Press, 2013).

  146. Bolus, M. F., Willats, A. A., Rozell, C. J. & Stanley, G. B. State-space optimal feedback control of optogenetically driven neural activity. J. Neural Eng. 18, 036006 (2021).

    Article  Google Scholar 

  147. Basu, I. et al. Consistent linear and non-linear responses to invasive electrical brain stimulation across individuals and primate species with implanted electrodes. Brain Stimulat. 12, 877–892 (2019).

    Article  Google Scholar 

  148. Bertsekas, D. P. Dynamic Programming and Optimal Control (Athena Scientific, 2005).

  149. Abbaspourazad, H., Erturk, E., Pesaran, B. & Shanechi, M. M. Dynamical flexible inference of nonlinear latent factors and structures in neural population activity. Nat. Biomed. Eng. 8, 85–108 (2024).

    Article  Google Scholar 

  150. Shanechi, M. M., Chemali, J. J., Liberman, M., Solt, K. & Brown, E. N. A brain–machine interface for control of medically-induced coma. PLoS Comput. Biol. 9, e1003284 (2013).

    Article  Google Scholar 

  151. Yang, Y. & Shanechi, M. M. An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia. J. Neural Eng. 13, 66019 (2016).

    Article  Google Scholar 

  152. Yang, Y. et al. Developing a personalized closed-loop controller of medically-induced coma in a rodent model. J. Neural Eng. 16, 036022 (2019).

    Article  Google Scholar 

  153. Hampson, R. E. et al. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall. J. Neural Eng. 15, 036014 (2018).

    Article  Google Scholar 

  154. Lesort, T., Díaz-Rodríguez, N., Goudou, J.-F. & Filliat, D. State representation learning for control: an overview. Neural Netw. 108, 379–392 (2018).

    Article  Google Scholar 

  155. Kremen, V. et al. Integrating brain implants with local and distributed computing devices: a next generation epilepsy management system. IEEE J. Transl. Eng. Health Med. https://doi.org/10.1109/JTEHM.2018.2869398 (2018).

  156. Rouse, A. G. et al. A chronic generalized bi-directional brain–machine interface. J. Neural Eng. 8, 36018 (2011).

    Article  Google Scholar 

  157. Stanslaski, S. et al. A chronically implantable neural coprocessor for investigating the treatment of neurological disorders. IEEE Trans. Biomed. Circuits Syst. 12, 1230–1245 (2018).

    Article  Google Scholar 

  158. Sun, F. T. & Morrell, M. J. The RNS system: responsive cortical stimulation for the treatment of refractory partial epilepsy. Expert Rev. Med. Devices 11, 563–572 (2014).

    Article  Google Scholar 

  159. Swann, N. C. et al. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in five patients with Parkinson’s disease. J. Neurosurg. 128, 605–616 (2018).

    Article  Google Scholar 

  160. Krauss, J. K. et al. Technology of deep brain stimulation: current status and future directions. Nat. Rev. Neurol. 17, 75–87 (2021).

    Article  Google Scholar 

  161. Arlotti, M. et al. A new implantable closed-loop clinical neural interface: first application in Parkinson’s disease. Front. Neurosci. 15, 763235 (2021).

    Article  Google Scholar 

  162. Zhou, A., Johnson, B. C. & Muller, R. Toward true closed-loop neuromodulation: artifact-free recording during stimulation. Curr. Opin. Neurobiol. 50, 119–127 (2018).

    Article  Google Scholar 

  163. Hashimoto, T., Elder, C. M. & Vitek, J. L. A template subtraction method for stimulus artifact removal in high-frequency deep brain stimulation. J. Neurosci. Methods 113, 181–186 (2002).

    Article  Google Scholar 

  164. Rozgic, D. et al. A 0.338 cm3, artifact-free, 64-contact neuromodulation platform for simultaneous stimulation and sensing. IEEE Trans. Biomed. Circuits Syst. 13, 38–55 (2019).

    Google Scholar 

  165. Zhou, A. et al. A wireless and artefact-free 128-channel neuromodulation device for closed-loop stimulation and recording in non-human primates. Nat. Biomed. Eng. 3, 15–26 (2019).

    Article  Google Scholar 

  166. Kohl, S. et al. Deep brain stimulation for treatment-refractory obsessive compulsive disorder: a systematic review. BMC Psychiatry 14, 214 (2014).

    Article  Google Scholar 

  167. An, H. et al. A power-efficient brain–machine interface system with a sub-mw feature extraction and decoding ASIC demonstrated in nonhuman primates. IEEE Trans. Biomed. Circuits Syst. 16, 395–408 (2022).

    Article  Google Scholar 

  168. Shoaran, M., Haghi, B. A., Taghavi M., Farivar M. & Emami-Neyestanak A. Energy-efficient classification for resource-constrained biomedical applications. IEEE J. Emerg. Sel. Top. Circuits Syst. 8, 693–707 (2018).

    Article  Google Scholar 

  169. Hurwitz, C., Kudryashova, N., Onken, A. & Hennig, M. H. Building population models for large-scale neural recordings: opportunities and pitfalls. Curr. Opin. Neurobiol. 70, 64–73 (2021).

    Article  Google Scholar 

  170. Sarchiapone, M. et al. The association between electrodermal activity (EDA), depression and suicidal behaviour: a systematic review and narrative synthesis. BMC Psychiatry 18, 22 (2018).

    Article  Google Scholar 

  171. Wickramasuriya, D. S., Amin, Md R. & Faghih, R. T. Skin conductance as a viable alternative for closing the deep brain stimulation loop in neuropsychiatric disorders. Front. Neurosci. 13, 780 (2019).

    Article  Google Scholar 

  172. van Eck, M., Berkhof, H., Nicolson, N. & Sulon, J. The effects of perceived stress, traits, mood states, and stressful daily events on salivary cortisol. Psychosom. Med. 58, 447–458 (1996).

    Article  Google Scholar 

  173. Young, A. H. Cortisol in mood disorders. Stress 7, 205–208 (2004).

    Article  Google Scholar 

  174. Chesnut, M. et al. Stress markers for mental states and biotypes of depression and anxiety: a scoping review and preliminary illustrative analysis. Chronic Stress 5, 24705470211000336 (2021).

    Article  Google Scholar 

  175. Topalovic, U. et al. Wireless programmable recording and stimulation of deep brain activity in freely moving humans. Neuron 108, 322–334.e9 (2020).

    Article  Google Scholar 

  176. Nason, S. R. et al. A low-power band of neuronal spiking activity dominated by local single units improves the performance of brain–machine interfaces. Nat. Biomed. Eng. 4, 973–983 (2020).

    Article  Google Scholar 

  177. Paulk, A. C. et al. Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex. Nat. Neurosci. 25, 252–263 (2022).

    Article  Google Scholar 

  178. Hsieh, H. L., Wong, Y. T., Pesaran, B. & Shanechi, M. M. Multiscale modeling and decoding algorithms for spike-field activity. J. Neural Eng. 16, 016018 (2019).

    Article  Google Scholar 

  179. Topalovic, U. et al. A wearable platform for closed-loop stimulation and recording of single-neuron and local field potential activity in freely moving humans. Nat. Neurosci. 26, 517–527 (2023).

    Google Scholar 

  180. Abbaspourazad, H., Choudhury, M., Wong, Y. T., Pesaran, B. & Shanechi, M. M. Multiscale low-dimensional motor cortical state dynamics predict naturalistic reach-and-grasp behavior. Nat. Commun. 12, 607 (2021).

    Article  Google Scholar 

  181. Abbaspourazad, H., Hsieh, H. & Shanechi, M. M. A multiscale dynamical modeling and identification framework for spike-field activity. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 1128–1138 (2019).

    Article  Google Scholar 

  182. Wang, C. & Shanechi, M. M. Estimating multiscale direct causality graphs in neural spike-field networks. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 857–866 (2019).

    Article  Google Scholar 

  183. Sani, O. G., Abbaspourazad, H., Wong, Y. T., Pesaran, B. & Shanechi, M. M. Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification. Nat. Neurosci. 24, 140–149 (2021).

    Article  Google Scholar 

  184. Song, C. Y., Hsieh, H.-L., Pesaran, B. & Shanechi, M. M. Modeling and inference methods for switching regime-dependent dynamical systems with multiscale neural observations. J. Neural Eng. 19, 066019 (2022).

    Article  Google Scholar 

  185. Stangl, M., Maoz, S. L. & Suthana, N. Mobile cognition: imaging the human brain in the ‘real world’. Nat. Rev. Neurosci. 24, 347–362 (2023).

    Article  Google Scholar 

  186. Brown, T. et al. Controlling our brains — a case study on the implications of brain–computer interface-triggered deep brain stimulation for essential tremor. Brain Comput. Interfaces 3, 165–170 (2016).

    Article  Google Scholar 

  187. Klein, E. et al. Brain–computer interface-based control of closed-loop brain stimulation: attitudes and ethical considerations. Brain Comput. Interfaces 3, 140–148 (2016).

    Article  Google Scholar 

  188. Yuste, R. et al. Four ethical priorities for neurotechnologies and AI. Nature 551, 159–163 (2017).

    Article  Google Scholar 

  189. Greenberg, B. D. et al. Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive–compulsive disorder: worldwide experience. Mol. Psychiatry 15, 64–79 (2010).

    Article  Google Scholar 

  190. Hamani, C. & Temel, Y. Deep brain stimulation for psychiatric disease: contributions and validity of animal models. Sci. Transl. Med. 4, 142rv8 (2012).

    Article  Google Scholar 

  191. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    Article  Google Scholar 

  192. Machado, T. A., Kauvar, I. V. & Deisseroth, K. Multiregion neuronal activity: the forest and the trees. Nat. Rev. Neurosci. 23, 683–704 (2022).

    Article  Google Scholar 

  193. Tye, K. M. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537–541 (2013).

    Article  Google Scholar 

  194. Namburi, P. et al. A circuit mechanism for differentiating positive and negative associations. Nature 520, 675–678 (2015).

    Article  Google Scholar 

  195. Calhoon, G. G. & Tye, K. M. Resolving the neural circuits of anxiety. Nat. Neurosci. 18, 1394–1404 (2015).

    Article  Google Scholar 

  196. Janssen, M. L. F. et al. Cortico-subthalamic inputs from the motor, limbic, and associative areas in normal and dopamine-depleted rats are not fully segregated. Brain Struct. Funct. 222, 2473–2485 (2017).

    Article  Google Scholar 

  197. Hultman, R. et al. Brain-wide electrical spatiotemporal dynamics encode depression vulnerability. Cell 173, 166–180.e14 (2018).

    Article  Google Scholar 

  198. Mague, S. D. et al. Brain-wide electrical dynamics encode individual appetitive social behavior. Neuron 110, 1728–1741.e7 (2022).

    Article  Google Scholar 

  199. Wu, H. et al. Closing the loop on impulsivity via nucleus accumbens delta-band activity in mice and man. Proc. Natl Acad. Sci. USA 115, 192–197 (2018).

    Article  Google Scholar 

  200. Hamani, C. et al. Deep brain stimulation reverses anhedonic-like behavior in a chronic model of depression: role of serotonin and brain derived neurotrophic factor. Biol. Psychiatry 71, 30–35 (2012).

    Article  Google Scholar 

  201. Lim, L. W. et al. Electrical stimulation alleviates depressive-like behaviors of rats: investigation of brain targets and potential mechanisms. Transl. Psychiatry 5, e535 (2015).

    Article  Google Scholar 

  202. Rappel, P. et al. Subthalamic theta activity: a novel human subcortical biomarker for obsessive compulsive disorder. Transl. Psychiatry 8, 118 (2018).

    Article  Google Scholar 

  203. Miller, K. J., Prieto, T., Williams, N. R. & Halpern, C. H. Case studies in neuroscience: the electrophysiology of a human obsession in nucleus accumbens. J. Neurophysiol. 121, 2336–2340 (2019).

    Article  Google Scholar 

  204. Ramasubbu, R., Anderson, S., Haffenden, A., Chavda, S. & Kiss, Z. H. T. Double-blind optimization of subcallosal cingulate deep brain stimulation for treatment-resistant depression: a pilot study. J. Psychiatry Neurosci. 38, 325–332 (2013).

    Article  Google Scholar 

  205. Zhang, C. et al. Bilateral habenula deep brain stimulation for treatment-resistant depression: clinical findings and electrophysiological features. Transl. Psychiatry 12, 52 (2022).

    Article  MathSciNet  Google Scholar 

  206. Fenoy, A. J. et al. Deep brain stimulation of the medial forebrain bundle: distinctive responses in resistant depression. J. Affect. Disord. 203, 143–151 (2016).

    Article  Google Scholar 

  207. Coenen, V. A. et al. Superolateral medial forebrain bundle deep brain stimulation in major depression: a gateway trial. Neuropsychopharmacology 44, 1224–1232 (2019).

    Article  Google Scholar 

  208. Gálvez, J. F. et al. The medial forebrain bundle as a deep brain stimulation target for treatment resistant depression: a review of published data. Prog. Neuropsychopharmacol. Biol. Psychiatry 58, 59–70 (2015).

    Article  Google Scholar 

  209. Goodman, W. K. et al. Deep brain stimulation for intractable obsessive compulsive disorder: pilot study using a blinded, staggered-onset design. Biol. Psychiatry 67, 535–542 (2010).

    Article  Google Scholar 

  210. Bewernick, B. H., Kayser, S., Sturm, V. & Schlaepfer, T. E. Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: evidence for sustained efficacy. Neuropsychopharmacology 37, 1975–1985 (2012).

    Article  Google Scholar 

  211. Barcia, J. A. et al. Personalized striatal targets for deep brain stimulation in obsessive–compulsive disorder. Brain Stimulat. 12, 724–734 (2019).

    Article  Google Scholar 

  212. Bergfeld, I. O. et al. Deep brain stimulation of the ventral anterior limb of the internal capsule for treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry 73, 456–464 (2016).

    Article  Google Scholar 

  213. Abelson, J. L. et al. Deep brain stimulation for refractory obsessive–compulsive disorder. Biol. Psychiatry 57, 510–516 (2005).

    Article  Google Scholar 

  214. Mosley, P. E. et al. A randomised, double-blind, sham-controlled trial of deep brain stimulation of the bed nucleus of the stria terminalis for treatment-resistant obsessive–compulsive disorder. Transl. Psychiatry 11, 190 (2021).

    Article  Google Scholar 

  215. Jiménez, F. et al. A patient with a resistant major depression disorder treated with deep brain stimulation in the inferior thalamic peduncle. Neurosurgery 57, 585–593 (2005).

    Article  Google Scholar 

  216. Jiménez, F. et al. Neuromodulation of the inferior thalamic peduncle for major depression and obsessive compulsive disorder. Acta Neurochir. Suppl. 97, 393–398 (2007).

    Article  Google Scholar 

  217. Roweis, S. & Ghahramani, Z. A unifying review of linear Gaussian models. Neural Comput. 11, 305–345 (1999).

    Article  Google Scholar 

  218. Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).

    Article  Google Scholar 

  219. Vyas, S., Golub, M. D., Sussillo, D. & Shenoy, K. V. Computation through neural population dynamics. Annu. Rev. Neurosci. 43, 249–275 (2020).

    Article  Google Scholar 

  220. Vahidi, P., Sani, O. G. & Shanechi, M. M. Modeling and dissociation of intrinsic and input-driven neural population dynamics underlying behavior. Proc. Natl Acad. Sci. USA 121, e2212887121 (2024).

    Article  Google Scholar 

  221. Camacho, E. F. & Bordons, C. Model Predictive Control (Springer, 2007).

  222. Nozari, E. et al. Macroscopic resting-state brain dynamics are best described by linear models. Nat. Biomed. Eng. 8, 68–84 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank H. C. Jo, O. G. Sani, T. Jani and N. Sadras in the Shanechi laboratory for helpful feedback. This work was partly supported by the US National Institutes of Health grants R01MH123770 and R61MH135407, the One Mind Rising Star Award, and the Foundation for OCD Research.

Author information

Authors and Affiliations

Authors

Contributions

L.L.O. and M.M.S. developed the content and wrote the manuscript.

Corresponding author

Correspondence to Maryam M. Shanechi.

Ethics declarations

Competing interests

M.M.S. is an inventor on University of Southern California’s patents or patent applications related to decoding and closed-loop control approaches, and is a consultant for Paradromics Inc. L.L.O. declares no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks David Borton, Andreas Horn and Jean-Philippe Langevin for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oganesian, L.L., Shanechi, M.M. Brain–computer interfaces for neuropsychiatric disorders. Nat Rev Bioeng (2024). https://ift.tt/HhcsSuT

Download citation

  • Accepted:

  • Published:

  • DOI: https://ift.tt/HhcsSuT

Adblock test (Why?)



"interface" - Google News
June 03, 2024 at 07:50PM
https://ift.tt/UzEZ8Jt

Brain–computer interfaces for neuropsychiatric disorders - Nature.com
"interface" - Google News
https://ift.tt/bXpDzBS
https://ift.tt/YlGdm96

Bagikan Berita Ini

0 Response to "Brain–computer interfaces for neuropsychiatric disorders - Nature.com"

Post a Comment

Powered by Blogger.